
Copyright © 2013 Stardock. All rights reserved. All trademarks, trade names, service
marks and logos referenced herein are the property of Stardock Corporation. Windows
is a registered trademark of Microsoft Corporation in the U.S. and other countries.

www.stardock.com

This document explains how to decide which version of DirectSkin you should use and then how to add
this to your project.

Deciding on which version your application
should use

When adding DirectSkin to your application you need to
decide if you are going to use the version which requires your
installer to install the ocx into the system32/syswow64 folders,
or if you are going to use the version that allows you to have
your own unique copy of DirectSkin in your application folder.

For new projects we normally recommend using the version
which allows you to have your own unique copy of the ocx
as this reduces the risk of other DirectSkin client apps on your
machine upgrading the ocx without your knowledge. In the
documentation below we will call this the wbocx32 version.

Note: that if you are using this version then on the development
machines (and only the development machines), it may be easiest
if you also copy the ocx to the system32/syswow64 folders to
ensure that the development environment is able to easily locate
the ocx. This is because the ocx is pathless and so would typically
load from the current application folder.

If you are in complete control of the machines in question and
have multiple apps using DirectSkin then having a single copy
in system32/syswow64 may be simpler for your needs. In the
documentation below we will call this the wbocx version.

Once you have made this decision you need to add the
correct ocx to your project.

The ocx will show up as the following depending on the
version you are using:
 “wbocx ActiveX Control Module” - If using wbocx
 “DirectSkin 5 ActiveX Control module” - If using wbocx32

You must select the right version when adding it to your

project, although if you change your mind you should be
able to easily reimport the right version later depending on
the capabilities of your development environment.

Adding the control to Visual Basic 6

Adding the control is easy in VB6. Just open up the project
menu and select the components menu item (Ctrl-T) or right
click on the toolbox and pick components from that menu.

Note: that on Windows 7 you may need to run VB6 elevated to
add ocx controls to projects.

Then simply pick the ocx based on the name of the ocx
version you want to use.

Once you have done this there should be a new icon in the
toolbox for DirectSkin. This looks like this:

To add the ocx to the application just put this control on the
first dialog which gets created in your application. You should
be aware that when this dialog is destroyed DirectSkin would
be disabled.

Once added you can start DirectSkin with the following lines
of code:

 Wbocx1.SetRootPathStr “replace with location of skin folder”
 Wbocx1.LoadUIS “skinname\skinname.uis”
 Wbocx1.DoWindow 0

Congratulations, you have now added
DirectSkin to your VB6 application!

DIRECTSKIN
A GUIDE TO ADDING DIRECTSKIN TO YOUR APPLICATION

1 OF 4

STR - DirectSkin_AddingDS_6.4.indd 1 6/4/2013 10:30:15 AM

Copyright © 2013 Stardock. All rights reserved. All trademarks, trade names, service
marks and logos referenced herein are the property of Stardock Corporation. Windows
is a registered trademark of Microsoft Corporation in the U.S. and other countries.

www.stardock.com

Adding the control to Visual Studio 6 (VC6) via a
control on a dialog using MFC

Adding the control to Visual Studio 6 using VC6 is simple.

From the Project menu select Add to Project and on
the submenu that it opens you should pick Components
and Controls.

Then pick Registered ActiveX Controls from the file dialog
and locate the ocx using the correct name for the version
you want to use. Once added there should be a new icon
on the toolbox for DirectSkin.

It will look like this:
To add the ocx to the application just put this control on the
first dialog which gets created in your application. You should
be aware that when this dialog is destroyed DirectSkin would
be disabled.

Once added use the Member Variables tab on the MFC
Class Wizard to assign a variable to this control and then
make the following calls in your InitDialog handler:
 m_DirectSkin.SetRootPathStr (“replace with location of skin

folder”);
m_DirectSkin.LoadUIS (“skinname\\skinname.uis”);
m_DirectSkin.DoWindow (0);

Adding the control to Visual Studio 6 / Visual Studio
2002/2003/2005/2008/2010 (no dialog)

If you want to add DirectSkin to an application which either
does not use MFC, or does not have a single dialog that
remains during the entire process life then you can add the
ocx to the project manually.

Firstly add the header wbocx.h to your project manually. This
file can be created by making a test project and following the
instructions for adding the control to a dialog or you can find
a suitable header included with the sample projects.

If you are not using MFC or are using another development
environment you should follow the procedures for creating
a header for an ActiveX control for use with your
development environment.

Once you have added the header you need to create the
control at runtime. We recommend you create this early on
in your process startup so that it can be running before you
open any windows.

Firstly create a class or global variable of type CWbocx.

Then create the control using the following lines:

 BSTR bstrLicense = ::SysAllocStringLen(pwchLicenseKey,
sizeof(pwchLicenseKey)/sizeof(WCHAR));

 if (!m_DirectSkin.Create (“”, 0, CRECT (0,0,0,0), this, 0, NULL,
FALSE, bstrLicense))

 {
 AfxMessageBox(“Failed to load WindowBlinds skinning
 OCX”);
 }
 ::SysFreeString(bstrLicense);
 pwchLicenseKey is the structure created by the Microsoft
 utility Licreqst (see Q151771)

Once done you can now turn on DirectSkin using the
following calls:
 m_DirectSkin.SetRootPathStr (“replace with location of

skin folder”);
m_DirectSkin.LoadUIS (“skinname\\skinname.uis”);
m_DirectSkin.DoWindow (0);

Adding the control to a dialog in Visual Studio
2005/2008/2010 – MFC

Unlike earlier versions of Visual Studio, you only need to add
the control to the IDE once rather than once per project.

To do this you need to open up a dialog and right click on
the toolbox and select Choose Items... from the menu
that appears.

After a longish pause this will bring up a dialog with two tabs
in VS2005 – later versions have more tabs, but they are still
named the same.

You need to select the COM components tab and then find
the correct Active X control, tick it and then press “ok” to close
the dialog.

You should now have a Wbocx control under General in
your toolbox with an icon which looks like this:
The choose toolbox items window in Visual Studio 2005.

To add the ocx to the application just put this control on the
first dialog which gets created in your application. You should
be aware that when this dialog is destroyed DirectSkin would
be disabled.

2 OF 4

STR - DirectSkin_AddingDS_6.4.indd 2 6/4/2013 10:30:16 AM

Copyright © 2013 Stardock. All rights reserved. All trademarks, trade names, service
marks and logos referenced herein are the property of Stardock Corporation. Windows
is a registered trademark of Microsoft Corporation in the U.S. and other countries.

www.stardock.com

Once added right click the control on your dialog
and add a variable for this control and then make the
following calls in your InitDialog handler:
 m_DirectSkin.SetRootPathStr (“replace with location of

skin folder”);
m_DirectSkin.LoadUIS (“skinname\\skinname.uis”);
m_DirectSkin.DoWindow (0);

Adding the control to a .NET project (Dialog based)

Unlike earlier versions of Visual Studio, you only need to add
the control to the IDE once rather than once per project.

To do this you need to open up a dialog and right click on
the toolbox and select Choose Items... from the menu
that appears.

After a longish pause this will bring up a dialog with two tabs
in VS2005 – later versions have more tabs, but they are still
named the same.

You need to select the COM components tab and then find
the correct Active X control, tick it and then press ok to close
the dialog.

You should now have a Wbocx control under General in your
toolbox with an icon which looks like this:

To add the ocx to the application just put this control on the
first dialog which gets created in your application. You should
be aware that when this dialog is destroyed DirectSkin would
be disabled so if this is a problem please follow the instructions
for non dialog use.

Once added the control should already have a name (probably
axWbocx1).

Use this in your FormLoad handler or
InitializeComponent function and add the following
(convert the C++ syntax into VB.net, C# etc based on
which ever language you are using):
 axWbocx1->SetRootPathStr (“path to skin”);

axWbocx1->LoadUIS (“skinname\\skinname.uis”);
axWbocx1->SetVersionExpected (107);
axWbocx1->SetVersionExpected (185);
axWbocx1->SetVersionExpected (186);
axWbocx1->SkinAllThreads ();
axWbocx1->UxThemeEmulation (TRUE);
axWbocx1->DoWindow(0);

The SkinAllThreads call is recommended because
otherwise only the primary thread would be skinned
and UxThemeEmulation (TRUE) produces the best
results when you have a manifest.

You should also note that your controls may need their
FlatStyle property set to System.

Adding the control to a Delphi / C++ Builder project

To add the control to Delphi / C++ builder, use the component
menu and the “Import ActiveX control option”.

Find the correct ocx for the version you are using and select it.
Then use the install button to add it to your project.

Once added you can use it like any other control and you
should make the following calls from DirectSkin:
 SetRootPathStr (‘path to skin dir’);

LoadUIS (‘SkinName\SkinName.uis’);
SetVersionExpected (119);
DoWindow (0);

If the application has a themeaware manifest then
calling UxThemeEmulation (TRUE) is recommended.
SetVersionExpected (119) tells DirectSkin that the application
is using VCL and so it will alter how it handles certain controls
to avoid problems.

Adding the control to a .NET application dynamically

There are many cases where you do not want to add the
control to a dialog at design time and instead want to
construct the Wbocx control at runtime.

The following links describe how to do this in
two languages:
 C#
 VB.NET

The license file is the first line of your .lic file and you must
include any trailing spaces.

Example changes to make to C#:
 Perform the steps described on that link to create the

interop assemblies (using aximp) and then from the project
menu pick Add Reference and then browse to the ActiveX
Control interop assemblies that you created using aximp.

3 OF 4

STR - DirectSkin_AddingDS_6.4.indd 3 6/4/2013 10:30:16 AM

Copyright © 2013 Stardock. All rights reserved. All trademarks, trade names, service
marks and logos referenced herein are the property of Stardock Corporation. Windows
is a registered trademark of Microsoft Corporation in the U.S. and other countries.

www.stardock.com

Example syntax for aximp:
 aximp /out:C:\temp\AxMyProject.dll “C:\Windows\
 System32\wbocx.ocx”

Add the following to your class:
 private static AxWBOCXLib.AxWbocx _directSkin = null;

Then create a function to init the ocx and add the
following to it:
 _directSkin = new AxWBOCXLib.AxWbocx();

// set the license key
System.Reflection.FieldInfo f =
typeof(System.Windows.Forms.AxHost).
GetField(“licenseKey”,
System.Reflection.BindingFlags.NonPublic |
System.Reflection.BindingFlags.Instance);

 f.SetValue(_directSkin, “Put value from wbocx.lic in here”);
_directSkin.Name = “DirectSkin”;
_directSkin.CreateControl();
_directSkin.Size = new System.Drawing.Size(0, 0);
_directSkin.SetRootPathStr(“replace this with the directory
to the skin”);

 if (_directSkin.LoadUIS(“skinname\\skinname.uis”) == 0)
 {
 _directSkin.SetVersionExpected(107);

_directSkin.SetVersionExpected(185);
_directSkin.SetVersionExpected(186);
_directSkin.UxThemeEmulation(true);
_directSkin.SkinAllThreads (true);
_directSkin.DoWindow(0);
 }

You should put the license information from the wbocx.lic file
in the code along with changing the path for the skin and the
skin name.

Special note for .net developers

The default target processor for .net projects created in
VS2005/2008 is “Any CPU”. If you use this setting then you
must remember to include the 64 bit OCX as well as the
32 bit OCX as on a 64 bit system your application will run as
a 64 bit process.

If you do not wish this to happen you should ensure you select
x86 as the target cpu as this will run on 32 and 64 bit systems
as a 32 bit application.

Additionally some .NET controls will only pickup the system
colours of the theme and to ensure this is used you should
add ForceSystemColours (TRUE) to your DirectSkin calls and
this needs to be made before the DoWindow call.

Using other programming languages

If you use another programming language then you
should follow the instructions for using ActiveX controls with
that language.

Then you should call SetRootPathStr, LoadUIS and DoWindow.
You may wish to call UxThemeEmulation (TRUE) and
SkinAllThreads (TRUE).

Next Steps

Next you should read the “Performing common tasks using
DirectSkin” guide to explain how to do the most common
tasks with DirectSkin such as changing skin as well as a brief
explanation of all of the key DirectSkin apis.

4 OF 4

STR - DirectSkin_AddingDS_6.4.indd 4 6/4/2013 10:30:16 AM

